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ABSTRACT 

 

Terahertz radiation is an emerging field that has far reaching 

applications.  There is a need for portable and affordable terahertz sources that 

may be used for detection of structural weaknesses in aerospace composites.  

One possibility for terahertz generation is a femtosecond Cr:LiSAF laser. 

However, controlling intracavity dispersion is necessary in order to get the 

ultrashort pulses needed to generate terahertz radiation.  This research measures 

dispersion of the chirped femtosecond intracavity mirrors by employing white-

light interferometry and explains the theory behind the curve-fitting process 

used to calculate dispersion.  To compensate for the narrow reflectivity band of 

the mirrors, a CaF2  (calcium fluoride) window was used to increase the number 

of spectral fringes in the interferogram.  A cavity was designed using these 

mirrors and the Cr:LiSAF laser was successfully modelocked.  
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MEASURING THE DISPERSION OF LASER CAVITY MIRRORS USING 

WHITE-LIGHT INTERFEROMETRY 

 

I.  INTRODUCTION 

 
Modelocked, diode-pumped Cr:LiSAF (chromium-doped lithium strontium 

aluminum fluoride) lasers offer a portable and affordable alternative to 

commercial Ti:Sapphire (titanium sapphire) laser systems.  When modelocked, 

they are energy efficient and capable of producing femtosecond pulses (10-15 s = 

1 fs) that can be used to generate terahertz radiation.  In addition, Cr:LiSAF 

lasers can be used in detection devices to locate weaknesses in aerospace 

composites and to observe ultrafast processes such as a molecule undergoing a 

chemical reaction.   

Controlling cavity dispersion is crucial to modelocking a laser.  This 

research used white-light interferometry to measure dispersion in laser cavity 

mirrors.  The dispersion results were then used to engineer a modelocked laser 

cavity with the goal of generating terahertz radiation.  

Dispersion occurs when the phase velocity of a wave depends on its 

frequency.  For optical fields, the angular frequency is     ω = c k 0 , where  c  is the 

speed of light in a vacuum and 
    k0

= 2π λ
0
.  For a pulse, the phase velocity is 
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v

p
= w k , the group velocity is 

    
1 v

g
= ∂k ∂ω , and the group-velocity dispersion 

is     GVD = ∂2k ∂ω2 .  The main concern of this paper is group-delay dispersion 

  GDD = GVD ×L , which accounts for the length of dispersive media, L, and also 

applies to mirrors and laser cavities.  It is commonly described in units of fs2.  

Positive GDD causes a pulse to broaden temporally, making it difficult to 

achieve the desired effects of ultrashort pulses.  This research focused on optical 

elements that contribute negative GDD and counteract pulse spreading. 

This experiment is a continuation of the thesis work done by David 

Jones, a previous AFIT student [1].  The group delay dispersion of the optical 

components in the Cr:LiSAF laser cavity were measured using white-light 

interferometry.  This information was used to analyze dispersion in the laser 

cavity.  The goal was to create negative GDD, a condition for soliton-like 

modelocking.  This concept is expanded in Appendix A. Derivation of the Non-

Linear Schrödinger Equation.  Characterization of the CW beam and 

modelocking the laser precede the goal of generating terahertz radiation. 

Background 

Reliable sources and detectors of terahertz radiation (T-rays) were hard 

to find until the 1990s.  Now they are available on a limited basis, typically large 

systems for scientific research.  In 2006, electrical engineer Daniel Mittleman, 

from Rice University's T-ray lab said:  “The technology is very young.  

Terahertz is now where X-rays were in 1905 [2].” 
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T-rays can be used for detection in organic and inorganic materials, 

communication, and astronomy.  They are capable of penetrating non-

conducting materials like clothing and plastic, but not metal or water.  Unlike 

X-rays, T-rays do not damage body tissue, so they are safe for medical imaging.  

When looking at tissue, T-rays are able to detect differences in density that 

make them useful for finding tumors.   

T-rays have astronomical applications as well.  The Herschel Space 

Observatory, a satellite due to launch in 2008, is the terahertz version of the 

Hubble telescope [2].  DOD interest includes non-destructive testing of aerospace 

composites, T-ray radar, and secure communications.  Since many aircraft 

structures are built from composite materials, it is important to identify small 

cracks and delaminations.  With a small, portable, T-ray source, this and many 

other applications would be possible.  

Previous Work 

All-solid-state laser systems became available over a decade ago.  Since 

then, the use of tunable femtosecond lasers has grown to the point where they 

have become a fundamental tool in many areas of science, including physics, 

chemistry, and biology [3].  Materials scientists probe the dynamics of electrons 

in carbon nanotubes by carefully tuning a laser pulse’s wavelength for time-

resolved ultrafast spectroscopy.  Physicists also use tunable ultrafast laser 
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sources to explore the specific responses of different nonlinear optical materials 

[3]. 

Cr:LiSAF lasers were first demonstrated in the 1990s by M. J. P. Dymott 

and A. I. Ferguson [4].  Their goal was to generate short pulses with a high 

repetition rate and high power.  Their motivation was to create an all-solid-state 

alternative to the large Ti:Sapphire laser [5].  All-solid-state lasers are logistically 

simpler than gas lasers or dye lasers; and the Cr:LiSAF laser is a nice alternative 

to the Ti:Sapphire laser because it has a smaller footprint and an uncomplicated 

laser cavity. 

A recently published experiment used spectral filters on flash lamp pumps 

to reduce waste heat in the laser crystal.  The Centro de Lasers e Apliçacões in 

São Paulo, Brazil reported capabilities of 30 W average power at 851 nm, with 2 

J pulses at 15 Hz.  With a more restrictive filter, they showed average powers of 

20 W but peak powers of 10kW at 30 Hz [6].  This group focused on increasing 

power from Cr:LiSAF lasers, not T-ray production.   

Increasing continuous wave (CW) power is worthwhile, but short pulses 

inherently have high peak powers, so more can be done with a lower average 

power.  The intensity of a CW laser, 
 
I

CW
, is simply defined as 

 
  
I

CW
=

Power

Area
. (1.1) 
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The intensity of a pulse, however, must consider the pulsewidth, 
  
τ

p
, and the 

time between pulses, 
  τRT

, which is derived from the cavity length, L, using 

 
    
τ

RT
=

1

ν
=

2L

c
, (1.2) 

where  ν  is the pulse frequency, and c is the speed of light.  Taking the unique 

qualities of a pulse into consideration yields:  

 

   
P

p
=

P
CW

×τ
RT

τ
p

. (1.3) 

Compared to 
  τRT

, 
  
τ

p
 is very short, so one can see in (1.3) that peak power can 

be significant, even if the averaged CW power is unremarkable [7].  Modelocking 

is the easiest way to get short pulses from a laser. 

 Modelocking can only be achieved if cavity dispersion is controlled.  

Previous work on measuring dispersive media, both reflective and transmissive, 

used white-light interferometry.  That experimental technique is very different 

than the work presented in this research.  It used a compensated Michelson 

interferometer that is later unbalanced with the addition of dispersive media.  A 

He-Ne laser is co-aligned with the collimated white-light beam, and the fringes 

are sampled using a second detector.  By linking this detector to a piezoelectric 

translating stage, the movement of the delay arm is measured to sub-wavelength 

accuracy.  To find dispersion, a reference is first taken without the dispersive 

media using a square-law detector that sees the intensity of the spatial fringes as 

the delay arm is scanned.  A second collection is taken with the dispersive 
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   6

media, and then normalized using the reference data.  The resulting plot 

contains the phase information.  By fitting a fifth-degree polynomial to the 

curve, it is possible to discover the dispersive properties of the media with less 

than 4% error [8-10]. 

Research Objective  

Modelocked lasing from this cavity depends on compensating for the 

positive GDD introduced by the Cr:LiSAF crystal.  White-light interferometry 

was used to measure the amount of GDD contributed by mirrors in the cavity.  

Chapter 2 covers GDD in further detail. 

This research furthered the development of a terahertz radiation source 

that is small, inexpensive, portable, and rugged.  The concepts used in this 

system may be miniaturized, or expanded into a larger but still simple system.  

The applications of this technology are far reaching - including biomedical 

imaging, aerospace composite testing, airport security systems, and 

communications. 



II. THEORY 

 
This section covers the Cr:LiSAF laser cavity design, including selection 

of the gain medium, necessary intracavity corrections, dispersion control, and 

modelocking.  It also covers the mathematical theory supporting the use of a 

Michelson interferometer to measure GDD in the laser cavity mirrors.  The MI 

theory is extended to explain the curve-fitting procedure used for data analysis.  

Finally, Grenouille FROG, another method of GDD measurement is described. 

Cavity Design  

The basic cavity design (Figure 1) has the following components: a 

polarizing beam splitter (PBS); two spherical mirrors (SM) (R = 99.9%); two 

planar mirrors; one with high reflectivity (99.9%); and one with lower reflectivity 

(99.0%) that acts as an output coupler (OC).  A 3 mm long × 3 mm diameter 

Cr:LiSAF crystal with 5% doping lies between the two spherical mirrors.  Two 

AlGaInP (aluminum gallium indium phosphide) diode lasers are aligned such 

that one is polarized vertically while one is polarized horizontally and are 

combined in a PBS.  The combined beam passes through a lens (f = 5 cm), 

through the back of a spherical mirror, and focuses on the crystal.  The lens 

focuses the beam so the volume of the cavity mode matches the gain volume of 

the crystal.  To form a ring cavity the two planar mirrors are adjusted to reflect 

the beam from each spherical mirror onto the opposite planar mirror.  The 
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spherical mirrors are adjusted so that the beam waist is halfway between the 

planar mirrors.  In this configuration the CW beam propagates bi-directionally.  

However, when the laser is modelocked, unidirectional propagation is preferred.  

This effect is due to gain competition and the nonlinear loss mechanism induced 

via the Kerr lens.  When a saturable absorber mirror (SAM) is introduced into 

the cavity, the beam path is linear (Figure 2). 

The Cr:LiSAF crystal was selected because of its absorption and emission 

spectra (Figure 3).  There is a broad absorption band centered near 650 nm and 

an emission spectrum centered near 840 nm.  Semiconductor laser diodes, made 

with AlGaInP, operate at this peak absorption wavelength and are readily 

available at a relatively low cost.  These diode lasers are the same lasers used in 

DVD burners.  Their beam quality is excellent since burners require the beam to 

focus to a small spot size.   
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Figure 1.  Cavity design and laser path for linear (red) and ring (red & blue) 

 

  

 
Figure 2.  Linear cavity using SAM for passive modelocking 
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The emission spectrum of Cr:LiSAF is similar to the more common 

commercial Ti:Sapphire lasers, making it easy to find chirped mirrors, and other 

optical components. Cr:LiSAF is an excellent gain material with good energy 

storage and slope efficiency, which makes it ideal for use in pulsed lasers with 

high peak powers.  So, using this crystal as the gain medium allows for an 

efficient, cost-effective device. 

 
Figure 3.  Cr:LiSAF absorption and emission spectra [11]. 

 

Cavity Correction 

There are two types of correction needed in the cavity: astigmatism and 

GVD.  Astigmatism is introduced into the beam as it passes through the 

Brewster’s angle cut laser crystal.  The vertical and horizontal planes of the 

beam follow different paths, resulting in an elliptically shaped beam hitting the 
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spherical mirrors.  With a small angle of incidence, the spherical mirrors correct 

this astigmatism, restoring the beam to a circular cross-section. 

 GVD refers to a specific effect of an optical medium on a pulse of light.  

Pulse envelopes are made up of a number of frequency components, which are 

added together coherently.  In a dispersive system, these frequency components 

travel at different velocities, so the initially short pulse may broaden [12].  

Positive GVD slows the shorter wavelengths with respect to the longer 

wavelengths (Figure 4).  This delay results in temporally broadened pulses.   

 
Figure 4.  Positive GVD for a pulse in a dispersive medium [13]. 

 

The Sellmeier equation can be used to find the amount of dispersion in 

terms of wavelength for a given material.  From Diels, GVD is 250 fs2/cm for 2% 

doped Cr:LiSAF.  In this 3 mm long 5% doped crystal, the GDD is 75 fs2 [10].  

In a linear cavity, the beam passes through the crystal twice, so the GDD 

doubles. 

Chirped mirrors have special multilayer dielectric coatings with periodic 

spatial frequency.  They reflect shorter wavelengths at the layers closest to the 

front surface, while allowing longer wavelengths to penetrate deeper layers before 

being reflected (Figure 5). 
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Figure 5.  Operation principle of a chirped mirror.  Long wavelengths penetrate 

deeper into the mirror structure and thus experience a delay [14]. 
 

This causes the delay of the longer wavelengths needed to create negative 

GDD.  It counters the effect of the crystal and shortens the pulse.  Chirped 

mirrors are mainly used inside Ti:Sapphire oscillators that produce pulses shorter 

than 30 fs [3].  The chirped mirrors in this experiment are optimized for 

femtosecond-pulsed laser systems.  The advantage of chirped mirrors over other 

types of dispersion compensation is negative GDD over the whole bandwidth of 

femtosecond pulses.  Assuming a Gaussian pulse, the negative GDD results in an 

ideal linear chirp [15]. 

Chirp is the name for a change in frequency within a pulse envelope.  As 

a pulse propagates through the crystal, it undergoes self-phase modulation 

(SPM).  This is a small non-linear effect where the pulse experiences a phase 

shift, and subsequent change in the frequency spectrum (Figure 6).  The 

frequency either increases (up chirped) or decreases (down chirped) with time.  

An up chirped pulse is shown in Figure 7.  SPM broadens the spectral 

bandwidth, and gives short pulses in the time domain via the Fourier transform, 

as there is an inverse relationship between bandwidth and temporal pulse length. 
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Figure 6.  A pulse (top curve) propagating through a non-linear medium 

undergoes a self-frequency shift (bottom curve) due to SPM.  The front of the 

pulse is shifted to lower frequencies, the back to higher frequencies.  In the 

center of the pulse, the frequency shift is approximately linear [10]. 

 
Figure 7.  A positively chirped pulse in the time domain, resulting from SPM.  

In this figure, the amplitude is a Gaussian function.  The phase is quadratic, 

resulting in an instantaneous frequency sweep. 
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Modelocking  

 The primary source for ultrashort optical pulses is the modelcked laser 

oscillator [12].  When many longitudinal modes of the laser cavity (~186,000 in 

this case) are modelocked and equally spaced in frequency they combine to 

generate short pulses.  Another way to picture modelocking is a single pulse 

propagating around the laser cavity must have the same shape after one round 

trip; this is the definition of a soliton.  Further discussion of the soliton solution 

may be found in Appendix A. Derivation of the Non-Linear Schrödinger 

Equation.  The output of a modelocked laser is a train of pulses at an interval 

equal to the round-trip time of the cavity.  This concept was introduced earlier 

with Equation (1.2) and (1.3).  The shortest possible pulse duration is limited by 

the inverse gain bandwidth [7]. 

There are active and passive methods to achieve modelocked lasing.  

Active modelocking involves modulating the intracavity loss or phase, while 

passive modelocking involves using intracavity, intensity dependent, dispersion 

control elements that favor pulsed over CW operation.  They cause cavity modes 

that are above threshold to have the same phase, and lock together [12].  This 

section will focus on the two passive methods for modelocking the Cr:LiSAF 

laser:  the Kerr-lens effect and a saturable absorber mirror (SAM). 

The Kerr effect occurs in non-linear crystals, where the index of refraction 

depends on beam intensity.  Short pulses with high peak intensities are well 
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suited to induce the Kerr effect.  As the intensity increases, so does the index; 

the crystal acts like a lens, focusing the beam (Figure 8).   

 

 
Figure 8.  Kerr-lens modelocking principle [16]. 

 

When attempting to modelock a laser it is possible to take advantage of 

the Kerr-lens effect by inserting an aperture in the beam.  If the laser is 

modelocked, the pulses have high peak intensity, and the Kerr effect causes the 

crystal to focus the beam.  As the beam is focused, the waist shifts from its CW 

location to a different modelocked location.  If an aperture is placed at the 

modelocked waist location, a pulse will experience less loss than a CW beam.  

By passing the pulses, the lens effect increases in the crystal and the pulse 

experiences more gain in each round-trip, driving the laser into pulsed 

modelocked operation.  

The other passive modelocking element used in the Cr:LiSAF cavity is a  

SAM.  A simple diagram is shown in Figure 9.  Each SAM must be carefully 
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designed for a specific application.  At the far side, there is a Bragg-mirror on a 

semiconductor wafer substrate.  This is covered with an absorber layer and then 

a sophisticated top film system, which determines saturable loss [17].  At high 

intensities, the absorber is saturated and becomes transparent to pulses, allowing 

them to pass through to the Bragg-mirror, where they are reflected back into the 

cavity.  At low intensities, the absorber is not saturated, and removes more of 

the incident energy from the cavity.  This SAM loss mechanism results in phase 

locking that causes pulses in the cavity. 

 

 
Figure 9.  Saturable Absorber Mirror [17]. 

 

Modelocking with the Kerr effect and SAM can only be achieved if the 

positive GVD from the laser crystal and the positive chirp from SPM are 

corrected with negative GDD mirrors.  White-light interferometry was used to 

measure GDD in these laser cavity mirrors. 
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White Light Interferometry 

Cr:LiSAF introduces frequency-dependent positive dispersion into the 

laser cavity.  This GDD is partially a result of the ultrafast SPM caused by the 

optical Kerr effect.  Chirped dielectric mirrors with negative GDD balance the 

Kerr effect in broad bandwidth pulses.  A standard Michelson interferometer and 

a white-light source can be used to measure the dispersive properties of both 

transmissive and reflective optical components.  The goal is to measure the GDD 

of the mirrors used in the Cr:LiSAF laser cavity in order to determine if the net 

GVD is negative.  This will provide the information needed to choose mirrors 

with the right amount of negative GDD in order to modelock the laser and 

generate terahertz radiation. 

White Light 

White light is the best choice to measure laser cavity mirrors because it 

mimics the broad bandwidth and short coherence length of femtosecond pulses.  

A Michelson interferometer uses a beam splitter and mirrors to create an 

interference fringe pattern.  Fringes occur when two or more light waves yield a 

resulting irradiance that deviates from the sum of the component irradiances 

[18].  If two beams interfere and create fringes, they consist of nearly the same 

frequency.  However, if the beams are both white light, which contains many 

frequencies, then the reds will interfere with only the reds, the blues with only 

the blues, etc., producing fringes as well. 
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As a quick review, here are some characteristics of white light, and how it 

lends itself to this application.  White light is essentially incoherent, like sunlight 

-- unless one looks on a femtosecond time-scale.  Its limited temporal coherence 

is very similar to ultrafast pulses.  A white light source emits many wavelengths 

(temporal incoherence), and the phase of the light emitted from different regions 

of the source are not correlated (spatial incoherence).  The coherence time, 
  τ  is

 

0
,  

   

τ
0

=
1

Δν
=

λ

ν Δλ
, (2.1) 

where 

    
Δλ =

λ2

c
Δν . (2.2) 

he longer the coherence time, the greater the

 

T  temporal coherence of the source 

[16].  Another way to describe coherence time is the interval over which the light

wave resembles a sinusoid.  For white light, 
   τ0

≈ 10−14 s, which is very short 

compared to a standard He-Ne laser, where 
   τ    

The coherence length, 

0
≈ 10−3 s.

 
l
c
, is 

cτ
0

=
λ2

Δλ
.

l
c

= 

    

 (2.3) 

the difference between the beam paths Fringes can appear on the detector when 

to each mirror is less than half the coherence length, 

 
   
l
c

≥ 2 l
2

− l
1( ). (2.4) 

Here, 
  
l
1
 and l

2
 are the distances from the beam splitter to each mirror, 
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re rence must be an integer multiple spectively. Additionally, the total phase diffe

of  π , and less than the coherence length (2.4).  For white light, 
   lc ≈ 2×

which is much shorter than a He-Ne laser, where 

10−4 cm, 

   lc ≈ 3×107 cm.   

Interference Theory 

In this experiment, a white light source is d  a Miirected into chelson 

amsplitter, half of the light 

0

interferometer (Figure 10).  When it reaches the be

p s º to asse straight through to the first mirror and half of the light is reflected 9

the second mirror.  After reflection on the mirrors, the beamsplitter directs the 

combined beams towards a detector.  Where the reflected beams overlap, 

interference fringes are expected when the path lengths are the same and they 

meet the criteria described in the previous section.   

The fringe visibility, V, can be described quantitatively as 

 V =
I

max
− I

min . 
I

max
+ I

min   
(2.5) 

The intensities in (2.5) correspond to a maximum and he 

e system.  The greatest contrast between th

 adjacent minimum in t

fr e dark and light fringes is when ing

V=1 [18].  Since the visibility depends on the delay between the beams,  τ , it 

can also be described to the first order as 

 
    
V τ( )= 1−

τ
, (2.6) 

τ
0

when 
   τ ≤ τ

0
, and zero otherwise [16].  Coherence time, 

  τ0
, is d .   

 

efined in (2.1)
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Figure 10.  Michelson interferometer (MI) 

 

 
Figure 11.  Simple Michelson interferometer 
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Figure 11 shows a simple diagram of a Michelson interferometer.  A 

sample mirror is placed in Arm 2, and a known dispersive window is placed in 

Arm 1 with the reference mirror.  This section explains the theory behind 

finding the GDD of the mirror in Arm 2.   

Beginning with an electric field E0 incident on a Michelson interferometer, 

the electric field is split into two beams.  In Arm 1, the electric field after 

traversing the arm and being reflected back is 

 
    E1

= ρ
1
E

0
e−ikW 2Le−ik2d , (2.7) 

and the electric field in Arm 2 after reflection is 

     E2
= ρ

2
E

0
e−ik2 ′d . (2.8) 

The reflectance at each mirror is 
  ρ1

 and 
   ρ ; d is the distance from the beam 

2

splitter to the first mirror;   ′d  is the distance from the beam splitter to the 

second mirror; and L is the thic 2 window.  Here, k describes 

propagation through air, and 

kness of the CaF

 
k
W

 describes propagation through the window.  

Combining the field in each arm yields the total electric field at the detector 

 
   ET

= E
1

+ E
2
. (2.9) 

The intensity of the combined beams is 

 
   
I = E

T

2
= E

1
+ E

2

2
= E

1
E

1
* + E

2
E

2
* + E

2
E

1
* + E

1
E

2
* . (2.10) 

Substitute (2.7) and (2.8) into (2.10), and 

     
I = E

1

2
+ E

2

2
+ ρ

2
E

0
e−ik2 ′d( )ρ

1
*E

0
*eikW 2Leik2d( )+ ρ

1
E

0
e−ikW 2Le−ik2d( )ρ

2
*E

0
*eik2 ′d( ). (2.11) 
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To include the phase change at th mirror, let e of the 

 

ρ
1
* = ρ

1

2 2

     

ρ = ρ e−iφM

ρ
2
* = ρ

2
e M

 (2.12) 

where 

iφ

  ρ1
 is real because the reflectance of a metal mirror does not cause a 

frequency dependant phase change, but the reflectance of the dispersive mirror, 

   ρ2
, has a complex phase component.  After substituting (2.12) into (2.11), and 

combining exponentials, 

    

I = E
0

2
ρ

1

2
+ E

0

2
ρ

2

2

 + E
0

2
ρ

2
ρ

1
e−iφMe

−ik2 d− ′d( )eikW 2L

+ E
0

eiφMe
ik2 d− ′d( )e−ikW 2L

 (2.13) 
2

ρ
1

ρ
2

Let
   
Δ = 2 ′d −d( ), the difference in round-trip path length, and normalize the 

incident intensity, so 

 

    

I

E
0

2
= ρ

1

2
+ ρ

2

2
+ ρ

1
ρ

2
e

−i kΔ+φM −2kW L( ) +e
i kΔ+φM −2kW L( )⎡

⎣⎢
⎤
⎦⎥
. (2.14) 

 

Recall that 

   

iθ +e−iθ

2 
cosθ =

e
. (2.15) 

Now the normalized intensity becomes 

 

    

I

E
0

2
= ρ

1

2
+ ρ

2

2
+ 2 ρ

1
ρ

2
cos kΔ + φ

M
−k

W
2L( ). (2.16) 
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If Arm 1 is blocked,     1
I ∝ ρ

2
E

0

2

, and if Arm 2 is blocked,     
I ∝ ρ

2

2
E

0

2

.  To 

properly normalize the intensity of the fringes, 

     

I

E
0

2
∝ 2 ρ

1
ρ

2

, (2.17) 

where the reference is twice the square-root of the product of each arm.   

Recall     λ
0

k =
2πn

 =2πσn =
ω
c

n
 when    

 σ =
1

λ
0

 and ω = 2π
c

λ
0

n
.  The index of 

fraction, n, is unity in air, but frequency dependant in general. 

argument of the cosine in (2.16) as 

re  Define the 

    
Ψ ω( )

 
≡ kΔ + φ

M
−k

W
2L

. (2

The first term of (2.18) relates to the field as it 

.18) 

travels through air, 

 
   
kΔ =

ω
c

Δ . (2.19) 

The third term of (2.18) relates to the field as it passes through the CaF  

window,  

2

= n ω( )ω
c

 
   
k
W

. (2.20) 

Using a Taylor series expansion of 
    
k ω( ) at ω , 
W 0

    

k
W

ω( )≅ k
W

ω
0( )+

dk
W

dω
ω0

ω − ω
0( )+

1

2

d 2k
W

dω2

ω0

ω − ω
0( )2

ω
 

≅ n ω
0( ) 0

c
+

ν
1

g

ω − ω
0( )+ W

2

GVD
ω − ω

0( )
 (2.21) 

2
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where 
  
ν

g
 is the group velocity.  The second t

change at the mirror.  Similar to (2.21), a Taylor series expansion of 

erm of (2.18) relates to the phase 

  φ  at 
  ω0

 is 
M

    

φ
M

ω( )= φ
M

ω
0( )+

dφ
M

dω
w0

ω − ω
0( )+

1

2

d 2φ
M

dω2

w0

ω − ω
0( )2

. (2.22) 

(2.22) is identical to (6.1) in Appendix B).  Combining equations 

 

(Note that 

(2.19), (2.21), and (2.22),   

Ψ ω( )=
ω
c

Δ

+φ
M

ω
0( )+

dφ
M

dω
w0

ω − ω
0( )+

1

2

d 2φ
M

dω2

w0

ω − ω
0( 2

−2Ln ω

)

( )ω
0

  (2.23) 

−
2L

ω − ω( )−L GVD ω − ω( )2

    
0 c ν

g
c 0 W 0

The term 
d 2φ

M

   
dω2

ω0

 is the GDD of the mirror.  Rearranging terms yields 

    

Ψ ω( )=
GDD

Mirror

2
−L GVD

Window

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

ω − ω
0( )2

+
dφ

M

dω
w

ν
g
c

0

−
2L

 
⎡

⎣

⎢
⎤

⎦

⎥
−( )

ω

⎢
⎢
⎢

⎥
⎥
⎥

ω ω
0

+

 (2.24) 

Δ + φ
M

ω
0( )− 2Ln ω

0( )ω
0

c c

Recall that 

 

    

ω − ω
0( )= 2πcσ − 2πcσ

0( )
= 2πc( ) σ − σ

0( )
 (2.25) 

Rewriting (2.24) in the form of a standard quadratic equation,    Ax 2 + Bx +C , 
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Ψ
2

σ( )= 2πc( )2 GDD
Mirror

⎡
−L GVD

Window

⎣⎢

⎤

⎦⎥

+ 2πc( )dφ
M

dω

⎢
⎢

⎥
⎥ σ − σ

0( )2

w0

−
2L

ν
g
c

 
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

σ − σ
0( )

+
ω

Δ + φ
M

ω
0( )− 2L n ω

0( ) ω
0

c c

 (2.26) 

The coefficient of the first quadratic term is 

 

    
A = 2πc( )2 GDD

Mirror

2
−L GVD

Window

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
 (2.27) 

Rearranged, 

 

    
2 πc( )2

GDD
Mirror

=
A

+ 2L GVD
Window

 (2.28) 

The previous equation shows that the unknown group-delay dispersion of 

a mirror can be found using this A coefficient.  The theoretical GVD of the CaF2 

ier equation with coefficients obtained 

from SCHOTT [19]: 

window may be calculated from the Sellme

 
    
n2 λ( )= 1+

λ2 − .002759866

.6188140λ2

+
λ2 −

.4198937λ2

.01061251
+

3.426229λ2

λ2 −1068.123
. (2.29) 

ultiplying 
    

∂2n

∂λ2
 M by twice the thickness of the window acco

t occurs as the beam passes through the window on its way to the 

mirror and again after reflection.  It also converts the window’s GVD with 

dimensions of time2/length into GDD with dimensions of time2.  At .846 μm, 256 

fs2 is the theoretical GDD for two passes through 5 mm of CaF2.  

unts for the 

dispersion tha
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Curve Fitting  

The curve-fit model uses (2.26) 

 
    

0⎝⎜ ⎠⎟
y σ( )= cos A σ − σ( )2

−P
⎛⎜⎜

⎞⎟⎟ + S , (2.30) 

where P represents a phase factor, and S is a vertical shift.  Each fit yields an A 

efficient which is used in (2.28) to find 
  
GDD

Mirror
co  at the central delay 

wavelength corresponding to 
  σ0

. 

2

Window Effect  

 Curve-fitting was improved by using the CaF  window.  The narrow 

stopband of chirped mirrors leaves little room for the number of interference 

fringes needed to apply the curve-fit model.  A theoretical plot of (2.30) using 

(2.27) with a negative GDD mirror alone in the MI arm is shown in Figure 12a; 

the next plot, Figure 12b, shows the effect of placing a dispersive media in the 

reference arm.  As the A coefficient become more negative, the number of fringes 

increases.  One can see that the second plot gives the curve-fit more information 

to fit so the coefficients are more accurate. 
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Figure 12.  Theoretical fringes: a. –50 fs2 negative GDD mirror  b. –50 fs2 

negative GDD mirror with a 5 mm CaF2 window in the reference arm. 
 

FROG  

 In addition to finding GDD with the Michelson interferometer, a second 

method was employed to corroborate the results.  It is a short-pulse 

measurement technique known as frequency-resolved optical-gating or FROG.  It 

uses an SHG crystal and a CCD camera to give near instantaneous feedback on 
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wavelength, pulse width, intensity, phase vs. time, spatial profile, and spatial 

chirp [20].  The Grenouille FROG, when paired with the QuickFrog software 

package, measures ultra-short laser pulses directly, and provides both spatial and 

temporal parameters.  The Grenouille measures the actual laser pulse width and 

the FWHM value for 
  
τ

p
.  Although it does measure spatial chirp, one drawback 

to the Grenouille is that is does not provide any information on the temporal 

chirp of the pulse.  The basic design of a Grenouille is shown in Figure 13. 

 

 
Figure 13.  Grenouille FROG [20]. 

 

The Grenouille FROG was used to measure the change in pulse width after 

g an equation similar the one used 

 

multiple bounces between two mirrors.  Usin

to find the waist of a Gaussian beam, the pulse train diverges like a Gaussian 

beam.   

 

    

τ
G

= τ
i

1+
L

b

g

⎛

⎝

⎜⎜⎜⎜⎜ ⎠
⎟⎟⎟⎟⎟

2⎞⎟
 (2.31) 
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where 
  τG

 is the final pulse width, 
  τi

 is the initial pulse width, and  b  is the 

number of bounces the beam makes on the mirrors.  The dispersion length 

τ
i
2

 
    
L

g
=

2 GDD
. (2.32) 

Rearranging (2.31) gives just one data point for the GDD at the wavelength of 

the Ti:Sapphire laser (800 nm) 

    

τ τ 2 − τ 2

 GDD
Mirror

= ± i G i

2b
. (2.33) 

avity Dispersion 

Using the mirror measurements from the MI and the FROG, it is trivial 

to analyze the total cavity dispersion.  Knox experimentally verified that the 

dispersion in a cavity can simply be summed [21].  Diels supports this result, 

showing that linear optical elements may be characterized by a complex optical 

transfer function 

 

C

    
H ω( )= R ω( )eiΨ ω( ), (2.34)

here

 

 
   
R ω( ) is the amplitude response and 

  
Ψ ω( ) is the phase delay (2.24) w

experienced by a spectral component of frequency  ω .  For a sequence of m 

optical elements, the total transfer function is just the product of the individual 

transfer functions  

     
H ω( )= H

j
ω( )= R

j
ω( )

j =1

m

∏
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟j =1

m

∏ exp −i Ψ
j

ω( )
j =1

m

∑
⎡

⎣
⎢
⎢⎢

⎤

⎦
⎥
⎥⎥
. (2.35)  
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Now that the groundwork has been laid for the Cr:LiSAF laser design, 

and the necessity of measuring dispersion in the laser cavity mirrors with white-

light interferometry has been explained, it’s time to expand on the details of the 

xperiment. 

The exponential term contains the quadratic phase response (GDD), so each

optical element in the cavity may simply be summed to determine the total

GDD for the system [10]. 

e



III.  METHODOLOGY 

 
The methodology section encompasses experimental techniques used to 

locate fringes with the Michelson interferometer and the details of data collection 

and analysis. 

Finding Fringes 

In order to find fringes, each mirror was placed in the sample arm, while 

the reference arm contained a metal reference mirror and a CaF2 window.  A 

complex positioning process was required to locate fringes within the delay arm’s 

limited range of movement.  The device’s original mirror had been attached to 

the front surface of the holder with a mask.  In order to reproduce the location 

of the reflective surface, while securing the sample in the holder, the holder was 

suspended above the bench with two identical spacers.  When the sample mirror 

was placed into the holder facedown, it protruded the same distance as the 

original mirror’s thickness (Figure 14).  This process meant that fringes could be 

found within the range of the delay arm when the sample was in the 

interferometer. 
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Locating fringes followed the simple process of aligning the reference 

mirror with the sample mirror, then adjusting the delay arm.  To align the 

mirrors, a crosshair was placed before the beam splitter and the reference mirror

was moved until both crosshair reflections overlapped.  The crosshair was 

removed and the delay arm was scanned with small movements until fringes 

were located.   

It was important to make small adjustments when looking for fringes.  

The fringes are often very thin, and the range of zero-delay very short

mm).  The eye c

Figure 14.  Sample holder 

 

 (± 0.01 

annot see them with continuous movement of the delay arm 

because it integrates the intensity of the fringes during their brief appearance.  It 

is necessary to pause between each small adjustment, to give the eye an 

opportunity to see the fringes if they exist at that location.  It is easy to make 

small adjustments on this interferometer because the delay arm knob is geared 

with a 5:1 ratio. 
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Once fringes are located, minute tip and tilt adjustments to the reference 

mirror change parallel fringes into a circular pattern.  In this arrangement, the 

GDD of the sample mirror can be found [20].  An aperture is placed in the 

output beam, and stopped down so the spectrometer sees only the large center 

fringe. 

 

  
Figure 15.  Example fringes a. Linear [22] b. Circular. 

 

Data Collection 

±

Figure 

files are collected.  The first is taken 

When properly adjusted into a circular fringe pattern, the range of zero-

delay is no longer very short.  Due to the large amount of GDD in these mirrors, 

fringes may be visible  0.15 mm on the delay arm.  Scanning through this range 

moves the location of zero-delay across the frequencies in the white-light.  

16 shows zero-delay at different wavelengths for three positions of the delay arm.  

Most data was collected at 0.02 mm intervals over the range where fringes were 

visible.  For each sample, two reference 
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with th

7). 

e sample arm blocked and the second is taken with the reference arm 

blocked.  The square root of the product of these two arms is used as the 

reference to normalize each scan.  This process is described in Equation (2.1
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Figure 16.  Example data showing the zero-delay wavelength as the delay arm is 

scanned 
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Analysis Process  

It is the regions of zero-delay where the theoretical model is fit to the 

experimental data.  The A-coefficient from the fit (2.30) is used to calculate the 

total GDD (2.28) for that wavelength.  This curve-fitting process has been 

automated in MATLAB.  The program is included in Appendix C. Datacruncher 

m-file.  To summarize the procedure: the sample data is normalized using the 

reference data; the zero-order fringe is identified; and the model is fit to a region 

that includes approximately four fringes on either side of the delay (Figure 17).  

The A-coefficient and 
  σ0

 are saved to an Excel workbook, where 
  σ0

 is converted 

to wavelength and A’s are used to find the total GDD.  Since all the 

experimental data was collected with the CaF2 window in the reference arm, its 

GDD must be removed from the total GDD to obtain the mirror’s GDD.  This 

process was discussed in the section on interference theory.   

The spectrometer was configured to maximize fringe visibility without 

saturating the CCD detector or losing the signal entirely.  On the bench, the 

detector and aperture were physically adjusted using near real-time feedback 

from the program.  
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Figure 17. Example curve-fit to experimental data 

 

FROG 

A Grenouille FR G was used to confirm the MI results.  T  ide

mirrors were placed so that Ti:Sapphire laser output made several bounces 

before going into the Grenouille FROG.  Two different sets of mirrors were each 

examined with two to eight bounces (

O wo ntical 

Figure 18).  As a reference (
  τi

), the pulses

were measured with no bounces. 

 

 

 
Figure 18.  Six bounces before FROG 
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IV.  RESULTS AND ANALYSIS 

 
 This section presents the results of measuring their GDD with the 

Michelson interferometer and the Grenouille FROG.  It addresses the offset 

between these results, and presents proof of modelocked operation in the 

Cr:LiSAF laser. 

 Mirrors 

There w 0 Ultrafast 

Chirped Negative GVD mirrors are used for multiple bounces in the cavity.  A 

photograph of a Newport mirror is shown in Figure 19.  The output coupler, 

made by CVI (PR1-850-99-0525), is in the position opposite the Newport mirror.  

This mirror is slightly less reflective than the other mirrors, allowing a portion of 

the beam to leak out of the cavity for analysis.  The two spherical mirrors were 

designed and manufactured specifically for this project.  Their coating is 

engineered to transmit the pump diode wavelength, 650 nm, and reflect the 846 

nm emitted by the gain media.  The transmission of these mirrors is shown in 

Figure 20.  The reflectance (1-T) is near 99.8% over a narrow region centered at 

840.  Since measuring curved mirrors with the Michelson interferometer is 

experimentally difficult, a third CVI mirror was used.  This mirror has the same 

coating as the spherical mirrors, but it’s flat.  Three other mirrors, not in the 

laser cavity, are a New Focus 5102 NIR, Coherent GO324-005, and BATOP 

ere six mirrors of interest.  The Newport 10Q20UF.4
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SAM 262-IIIa.2.  The New  control sample, where 

rge positive GDD was expected.  Like the CVI mirrors, the Coherent case 

contains two spherical mirrors and one flat mirror all with the same coating.  

These mirrors are available to focus the beam onto the SAM, if necessary.  The 

SAM concept was described in Chapter II.  A photograph of a SAM is shown in 

Figure 19b.  It is made of a 0.5 in copper mount, with a 3 mm2 mirror in the 

center, and it is designed to have a saturable loss of 2% absorption at 850 nm.  

Even though the SAM is so small in diameter with respect to the other mirrors, 

it was still possible to measure fringes with the MI.  

 

 Focus mirrors were used as a

la

 

 
Figure 19.  a.  Newport mirrors (1 in) [23].  b.  BATOP SAM (0.5 in) [18]. 
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MI Results 

Figure 20.  Transmission of CVI TNM2-800-900-0537 99.8% at 846 nm. 

Comparing the theoretical GDD for CaF2 with the GDD found using this 

experimental fitting method validated the analysis process.  At the lasing 

wavelength of Cr:LiSAF, the theoretical value is 256 fs2, while the experimental 

measurement found it to be 288 fs2.  This is within one standard deviation of the 

theoretical value.  Although, the difference is most likely caused by the 

beamsplitter and compensator in the MI, since they are each ~5 mm thick.   

The experimental results for all the mirrors are presented in Figure 21. 

he linear fit of each data set is shown along with the R-square value indicating 

the goodness of each fit.  The first impression of this plot is how strongly 

dispersive the Coherent and the New Focus mirrors are.  The Coherent mirror 

has the lowest R-square value of all the mirrors.  It is likely that the GDD of 

this mirror has some modulation that does not lend itself to a linear model.  

 

T
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While the New Focus, Newport, and BATOP mirrors show less modulation and 

have better linear fits.  Another noteworthy plot is the BATOP SAM.  It was 

not possible to obtain good curve-fits at wavelengths greater than 700 nm.  The 

equation of the linear fit was used to estimate the GDD at 846 nm where the 

Cr:LiSAF lases.  The same technique was used for all mirrors.  Once the value of 

total GDD at 846 nm was identified, the experimental value of CaF2, 288 fs
2, 

was subtracted as described in

ch mirror at the lasing wavelength. 

 

 (2.28).  Table 1 shows the GDD measured for 

ea
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Figure 21.  Data showing the R  values for linear fits 2
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Table 1.  GDD results from MI 

Mirror GDD at 846 nm (fs2) 

Newport 10Q20UF.40 - Ultrafast Chirped Neg GVD 60.7 

New Focus 5102-NIR 420.7 

Coherent GO324-005 307.7 

CVI - TNM2-800-900-0537– Flat - 6.6 

CVI - PR1-850-99-0525 – Output Coupler - 25.1 

BATOP SAM 262-IIIa.2  22.54 

 

FROG Results 

The first two mirrors in Table 1 were also measured with the Grenouille 

FROG, and these results are shown in Table 2.  The results from the FROG are 

closer to expected values.  The second column of Table 2 shows the MI results 

extrapolated to 800 nm from a linear fit to each data set.  The third column 

shows the offset between the FROG results and the MI results.  The average of 

the differences is 120 fs2.  This value will be referred to as the FROG offset.   

 

Table 2.  GDD results from FROG 

Mirror 

GDD from FROG 

at 800 nm (fs2) 

GDD from MI 

at 800 nm (fs2) Offset (fs2) 

Newport 10Q20UF.40 

Ultrafast Chirped Neg GVD 
-77.45 55.9 133.35 

New Focus 5102-NIR 308.41 414.27 105.86 

 

Table 2 shows that the New Focus mirrors are much more dispersive than 

the Newport mirrors.  It is possible to see the dispersive effect as the pulse train 
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mimics a diverging Gaus erimental data is in 

blue with the theoretical bea in red.  This data was ta

Ti:Sapphire laser ince the calculated GDD in  is 

very sensitive to the in

sian beam in Figure 22.  The exp

m divergence ken when the 

 was not very stable.  S  (2.31)

itial pulse width,
   τi

, the reference pulse was ad

such th  minimized, within the normal 

variance of the 

Figure 23 shows the GDD plots of these mirrors.  A flat line is expected 

from Equation (2.31) since GDD is a constant value for each wavelength. 

 

justed 

at the standard deviation of the results was

input.   

  
Figure 22.  Beam dispersion from bounces between two mirrors a. Newport b. 

New Focus 

 

 
Figure 23.  FROG results a. Newport b. New Focus 
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Error Analysis 

Using the MI, the standard deviation of the CaF2 measurements was 

25.18 fs2, while the standard deviation of the curve-fitting process to the 

experimental data was 25.45×10-5 μm-1.  S nce there were no known values for

the mirrors, the CaF2  error may be extended to all the mirrors measured with 

the MI.  Using the FRO

i  

G, the standard deviation is 3.06 fs2 for the Newport 

mirror

After adding the CaF2 window to the beam with multiple bounces on the 

Newport mirrors, and observing its effect on pulsewidth it is certain that the 

Newport mirrors have negative GDD.  So it makes sense to consider shifting the 

MI results by the FROG offset, 120 fs2.  The cause of this offset is unexplained, 

and further analysis is necessary to understand what would cause such a 

si

Table 3.  MI results adjusted for FROG offset. 

Mirror

, and 10.5 fs2  for the New Focus mirror.  This shows that the MI 

measurements were the largest source of systematic error.  

gnificant discrepancy between the MI and the FROG measurements. 

GDD at 846 nm (fs2)  

Newport 10Q20UF.40 - Ultrafast Chirped Neg GVD -59.3 

New Focus 5102-NIR 300.7 

Coherent GO324-005 187.7 

CVI - TNM2-800-900-0537– Flat -145.1 

CVI - PR1-850-99-0525 – Output Coupler - 145.1 

BATOP SAM 262-IIIa.2  - 97.46 
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Cavity Dispersion Analysis 

tion, 

 linear 

 

n 

e 

The dispersion of each intracavity element has been measured in isola

and the results have been adjusted using the FROG offset (Table 3).  The

cavity in Figure 2 uses the output coupler and four CVI mirrors, two Newport

mirrors, and a SAM.  One may simply combine their GDD to find the dispersio

of the entire resonator.  Using (2.35), the sum of the crystal and the dispersiv

elements in the cavity is -1544.62 fs2. 

 
   
−97.46 + 7×−145.1+12×−59.3 + 2×75 = −

SAM CVI Newport Cr:LiSAF

1544.62  (4.1) 

It was observed that twelve bounces between the Newport mirrors were 

necessary to generate enough negative GDD to saturate the SAM and achieve 

CW modelocking.  Eight bounces, resulting in -1307.54 fs  was not enough 

negative GDD for this SAM.  BATOP no longer makes this product because 

they determined that it is not an effective device.  So while it is possible to 

modelock the Cr:LiSAF laser using this saturable absorber mirror, the multiple 

bounces, and larg y with a more 

effective S

Michelson interfe ot adjusted with the FROG offset, the 

GDD of the modelocked cavity is 855.38 fs2  from the n  value 

that we upports the argument for 

using the FROG offset. 

2

e amount of negative GDD may not be necessar

AM.  It is also important to note that if the results from the 

rometer (Table 1) are n

.  This is far egative

 know is required for modelocking, and it s
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Modelocked Results 

Modelocking was achieved with the cavity design described in the 

previous section (Figure 2).  The overall CW profile is shown in Figure 24.  

Figure 25 zooms in to show a narrow region of the modes in the time domain.  

Figure 26 shows the Fourier transform into the frequency domain, where the 

mode spacing is 84.8 MHz, from     ν = c 2L .  This success validates using the 

FROG offset, because without it, the cavity dispersion measured with the MI 

ould be too positive to achieve modelocking. w
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Figure 24.  Q-switched modelocking in the time domain. 

 
Figure 25.  Zoom of time domain showing pulses. 

 

 
Figure 26.  Frequency domain showing modes.

   47



V.  SUMMARY AND SUGGESTIONS 

 
 This chapter discusses the conclusions that may be drawn from the 

results and explains the impact of this research.  It also includes suggestions for 

further research on this project.   

Conclusions of Research 

This cavity 

irrors using white light interferometry.  That task was the bulk of the effort, 

but near the end, a cavity built with the measured mirrors was successfully 

modelocked.  This validates the work and shows that this project is ready to 

move into the final phase of generating terahertz radiation.  

Impact of Research 

The literature review turned up papers that used interferometry to 

measure dispersive media li  

xtends to reflective media, but none demonstrate it experimentally.  So, 

measuring dispersive mirrors with this experiment was noteworthy. 

The most significant impact of this research was the development of a 

new technique to measure GDD in mirrors with a narrow stop band.  After an 

extensive literature search, no published work was found that uses a dispersive 

window to increase the number of spectral fringes for chirped mirrors.  

research met the goal of measuring the dispersion in laser 

m

ke glass [24].  They mention that the theory also

e
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Another importan ation of the 

athematical theory supporting this technique.  Most papers gloss over the 

details, so this was not a trivial undertaking.  It also resulted in identifying an 

error in a published paper [24].  This discovery is expanded on in Appendix B. 

Derivation of GDD Equation. 

Suggestions for Further Research 

The FROG offset needs further study.  More mirrors should be analyzed 

using the FROG and MI techniques to see if the offset is consistent.  The MI 

setup should be systematically modified to identify the source of this offset.  

Different dispersive windows, mirrors with wide stop-bands, alternate white-light 

sources are all possible changes.  Overall, the technique is effective; it is just a 

matter of finding the right components to get measurements that are more 

accurate.  Fortunately, the laser is not very sensitive to the magnitude of 

negative dispersion in the cavity, so modelocked operation was still achieved. 

Measuring the cavity mirrors and modelocking the laser completes the 

first phase of the larger project.  The second phase includes generating terahertz 

radiation and running on AA batteries.  A photoconductive switch may be used 

to generate terahertz with the modelocked laser.  Once the fundamental goal of 

generating terahertz has been accomplished, AA batteries can be used to power 

the pump diodes.  Then the Cr:LiSAF laser will truly be a portable, affordable 

source of terahertz radiation. 

t contribution was a careful deriv

m



A  PPENDIX A. DERIVATION OF THE NONLINEAR SCHRÖDINGER EQUATION

 

This derivation follows the one outlined in Boyd’s Nonlinear Optics [25]. 

Consider an optical pulse traveling in the z-direction, 

 

 

     
E z,( t)= A z,t( )ei k0z−ω0t( ) +c.c.  (6.1) 

ersive, nonlinear medium.  Where Propagate this pulse through a disp

    
k

0
= n

lin
ω

0 0
/c( )ω .  The pulse must obey the wave equation: 

 
    

∂ E z,t( ) ∂ D z,t( )2

∂z 2
−

1

c2

2

∂t 2
= 0 , (6.2)

where 

 

  D  contains both the linear and nonlinear contributions of the medium.  

The Fourier transforms of 
    
E z,t( ) and D z,t( ) are: 

 
     

1

2π
E z,t( )= E z,ω( )e−iωtdω

−∞

∞

 

∫  (6.3) 

     
D z,t( )=

1
D z,ω( )e−iωtdω∫ . (

2π
−∞

∞

6.4) 

Remember that 
    
E z,ω( ) and D z,ω( ) are related by: 

 
    
D z,ω( )= ε ω( )E z,ω( ). (6.5) 

Substitution of (6.3) and (6.4) into the wave equation (6.2), yields: 

 
    

2

∂z 2

∂ E z,ω( )
+ ε ω( )ω2

c2
E z,ω( )= 0 . (6.6) 

Focusing on the evolution of the pulse envelope, take the Fourier transform of 

(6.1) and substitute the result into (6.6): 
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E z,ω( )= A z,t( )e
−∞

∫ dt

= eikoz A z,t( )eit ω−ω0( )dt
∞

∫

= A z,ω − ω( )eikoz

i k0z−ω0t( )eiωt
∞

−∞

0

 (6.7) 

where 
    
A z,ω( ) is the Fourier transform of 

    
A z,t( ). 

Now, the wave equation in terms of 
    
A z,ω − ω

0
: ( ) is

     

∂2

∂z 2
Aeik0z + ε ω( )ω

2

2

c
Aeik0z = 0

 

Aeik0z = 0

 (6.8) 

2ik
0
Aeik0z +eik0z

∂2A

∂z 2
−k

0
2Aeik0z + ε ω( )ω2

2c

Since 
    
A z,ω − ω

0) is a slowly varying envelope, drop the (
   

∂2A
 term.  From 

∂z 2

2

electromag ll netic theory, reca
    
k 2 ω( )= ε ω( )ω

.  After canceling common 
c2

exponential terms, 

    

∂A z,ω − ω
0( )

∂z
ik

0
+ k 2 −k

0
2( )A z,ω − ω

0)= 0 . (6.9) (

e modulation and dispersion are considered small perturbations, 

ake the approximation that 

 

Because self-phas

   
k 2 −k

0
2 = 2k

0
k −k

0( .)m   So, 

∂A z,ω − ω
0( )

i + 2 k −k( )A z,ω − ω( )= 0   
    ∂z 0 0

(6.10) 

ext, Taylor expand 
   
k ω( ) about 

  ω0
 N and include the first nonlinear term: 

 
    

0 2
k ω( )= k + n I

ω
0 + ′k ω − ω( )+

1
0 2

′′k ω − ω( )2
. (6.1

0
1) 

c
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Where I is the intensity 

 
     
I =

nc

2π
A z,t( )

2

, (6.12) 

  ′k  is related to the group velocity 

dk ω( )
dω

ω=ω0

=
1′k = 
v

g

, (6.13)

    

 

and   ′′k  is the group velocity dispersion (GVD), 

    

′′k =
d 2k ω( )
dω2

ω=ω0

= −
1

v
g
2

dv
g

dω
ω=ω0

  (6.14) 

Finally, make a change of variables 
   
Δ = ω − ω( ),0

 substitute (6.11) into (6.10) 

and take the inverse Fourier transform,  ℑ  

 

    
∂z

ℑ
∂A z,Δ( )

− in
2
I

ω
0

c
A z,Δ( )− i ′k ΔA z,Δ( )− i

′′k

2
Δ2A z,Δ( )= 0

⎧⎪

⎩
⎪⎪⎪

⎫⎪
⎨
⎪⎪ ⎬

⎪⎪

⎭
⎪⎪⎪
 (6.15) 

From the Fourier transform tables: 

 

    

ℑ A z,Δ( ){ }= A z,t( )

ℑ ΔA z,Δ( ){ }= i
∂t

∂A z,t( )

ℑ Δ2A z,Δ( ){ }=
∂2A z,t( )

∂t 2

 (6.16) 

Substitution of these Fourier transforms yield: 

 
∂A z,t( )
     ∂z

− in
2
I

ω
0

c
A z,t( )+ ′k

∂t

∂A z,t( )
+ i

2

′′k ∂2A z,t( )
= 0 . (6.17) 

∂t 2
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se a Galilean Boost transformation, 

   
τ = t −

z

v
g

U , to change to the reference 

frame of the pulse, 

     

∂A z,τ( )
∂z

+ i
′′k

2

∂2A z,τ( )
∂τ 2

= i
nn

2
ω

0

2π
A z,τ( )

2

A z,τ( ). (6.18)  

E Schrödinger equation.  It 

describes propagation of optical pulses through dispersive media.  The solutions 

are solitons,  

 

quation (6.18) is known as the nonlinear 

     

A z,τ( )= A
0
 sech

τ
τ

0

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟
e

−i
2τ0

2

′′k
z

A
0

2 −2 ′′k
=

π
nn

2
ω

0
τ

0
2

τ
0

= pulsewidth

 (6.19) 

Note that for   ′′k to be real and positive,  and 
  
A

  
n

20
 must be of 

opposite sign.  Since 
  
n

2
 is positive for Cr:LiSAF,   ′′k (GDD) must be 

negative in the cavity to maintain pulsed lasing. The required 

magnitude of this GDD must be determined experimentally. 

 

  
 



APPENDIX B. DERIVATION OF GDD EQUATION 

 

When curved fringes are observed, the curvature is quadratic [22].  The 

quadratic phase displacement may be written as: 

 

    

Δφ ω( )= L
1

2
ω − ω

0( )2
′′k

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
1

2
L ′′k ω − ω

0( )2

 (8.1) 

Where L is the length of the medium, and   ′′k  is the group velocity dispersion of 

the medium at 
  ω0

dispersion.  If the wavenumber, 

.  This equation comes from a Taylor series expansion, where 

the first term is linear dispersion, is group-velocity  and the second term 

   
σ =

1
, and  

λ

 
    λ
ω = 2πν = 2π

hc
= 2πhcσ . (8.2) 

hen substitute (8.2) into (8.1) T

 

    

2
Δφ ω( )=

1
L ′′k 22 π2 h 2c2 σ − σ( )0

= 2Lπ2c2 ′′k σ − σ
0( )

 (8.3) 

In this situation, h is very small, and can be overlooked.  Expanding (8.3), 

 

    

Δφ ω( )= Aσ2 −Bσ −C

= 2Lπ2c2 ′′k σ2 − 4Lπ2c2 ′′k σ
0
σ − 2Lπ2c2 ′′k σ

0
2

.

 (8.4) 

The coefficients are defined as 
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A = 2Lπ2c2 ′′k

 

    

B = −4Lπ2c2 ′′k σ
0

C = −2Lπ2c2 ′′k σ
0
2

.

 (8.5) 

Now, it’s possible to find the central wavenumber, 
  σ0

, in terms of the 

coefficients by noticing that B contains 2A: 

    

B = −2Aσ
0

σ
0

=
−B

2A .

  (8.6) 

It is known that GVD (or   ′′k ) is proportional to the dispersion in a material [11] 

 
    

′′k =
λ

0
3 d 2n

0
2πc2 dλ 2

.
) 

The original goal was to find the dispersion in unknown materials using the 

coefficients from a curve fitted to experimental data.  So let’s try to manipulate 

ese equations into a useful form. 

 (8.7

th

 
    dλ

0
2

d 2n
=

2πc2

λ
0
3

′′k = 2πc2 ′′k σ
0
3 =

A

πL
σ

0
3 =

A −B3

8A 3
=

−B3

8πLA2πL 2
 (8.8) 

e GVD by the length of material, L: 

 

Now, to find GDD, just multiply th

=
− −2Aσ

0( )3

    

GDD = ′′k *L =
λ

0
3

L =
λ

0
3d 2n −B3

=
A

L
2πc2 dλ

0
2 2πc2 8π LA2

2 πc( )216π2c2A2σ
0
3

 (8.9) 

The GDD of a mirror may be found using just the A coefficient 

of a quadratic equation fit to the experimental data.  The central 

s from (8.6) using both the A and B coefficients.  

This equation differs from the reference [24] by a factor of two.  When the 

wavelength for that GDD come
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experimental result was exactly half the theoretical result of a known material, I 

went to the source of the equation [22] and re-derived (8.4). 



APPENDIX C. DATACRUNCHER M-FILE 

 

%% 

function [datacomp] = ABDatacruncher3 

datadir = '/Users/Al/Desktop/Fringe Data/20 Dec/CVI Thick'; 

%input is the directory where the data is located 

%all files with extension *.DAT will be processed 

%outputs include flist, the list if filenames in order of processing 

%These variables are declared here, so they are global for this function. 

xdata =0; 

ydata =0; 

xpos = 0; 

nfiles = 1; 

function button_Callback(source,eventdata)  

%This function is called when the continue button is called 

%Rescale data set to match selected 'zoomed in' area 

xpos = xlim; 

close(fig); 

xpos1 = floor(xpos(1)); 

xpos2 = floor(xpos(2)); 

xdata = 10000./xdata(xpos1:xpos2); 

ydata = smooth(ydata(xpos1:xpos2),'rlowess',.01); 

%This section finds a guess at the central wavenumber by looking 

%for the maximum of the fourier domain versus the new variable x2. 

%x2 is a new variable that goes as x^2 

%after scaling the x2fft, the new y's are resampled  

x2 = (xdata-centerpos).^2; 

x2max = max(x2); 

x2min = min(x2); 

x2new = x2min+(0:(length(x2)-1))*(x2max-x2min)/(length(x2)-1); 

x2fft = (0:((length(x2)/2)-1))/(x2max-x2min); 
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y2 = smooth(interp1(

y2fft = abs(fft(y2)); 

t(1:length(x2fft)); 

 simply 

cn(empt,event_obj) 

lot is clicked 

d the reference file. 

Before entering the major while loop. 

x2,ydata,x2new),'rlowess',.1); 

y2fft = y2ff

%plot(x2fft,y2fft); 

[c,iy2max]= max(y2fft(3:length(x2fft))); 

fguess = 2*pi*x2fft(iy2max+2); 

end  

function ok_Callback(source,eventdata)  

%This function is called when the OK butten is pushed. 

%The structure datacomp is saved to the current directory as a workplace file.   

save datacomp.mat datacomp; 

nfiles = nfiles+1; 

close(fig); 

end  

function redo_Callback(source,eventdata)  

%This function is called when the redo button is pushed.  It

%starts the data analysis over with the current file.  

close(fig); 

end 

function txt = myupdatef

%function called when the p

pos = get(event_obj,'Position'); 

centerpos = 10000/xdata(pos(1)); 

txt = {['Wavelength: ',num2str(xdata(pos(1)))]}; 

line([pos(1) pos(1)],[0 3]); 

end 

%This is the beginning of the function 

%It reads the list of data files an

%Then the reference file is smoothed.  

datalist = dir(fullfile(datadir,'*.DAT')); 

reflist = dir(fullfile(datadir,'*.ref')); 
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refinput = importdata(fullfile(datadir,reflist(1).name)); 

ata; 

,.01,'rlowess'); 

gth(datalist)) 

the ref and smooth data. 

atadir,datalist(nfiles).name)); 

put = datainput.data; 

 on the cursormode 

ar','figure');  

; 

0 4]); 

ections printed to screen 

0,2.9,'Zoom to select range. Cursor to select center','FontSize',12); 

 for user to to push continue 

tton','String','Continue','Position',[10 10 60 

); 

l nonlinear fit using the function fringe.  fguess and the selected 

enterpos,3,1,1]); 

ata,'fringe',betahat); 

refinput = refinput.d

refdata = smooth(refinput(:,2)

while(nfiles <= len

%Read in the data file, normalize it with 

datainput = importdata(fullfile(d

datain

xdata = datainput(:,1); 

ydata = datainput(:,2)./refdata; 

ydata=smooth(ydata,.01,'rlowess'); 

%Generates data plot and turns

fig = figure('Toolb

plot(ydata)

ylim([

zoom on; 

dcm_obj = datacursormode(fig); 

set(dcm_obj,'UpdateFcn',@myupdatefcn); 

% Help dir

text(

text(0,2.6,'Then press continue','FontSize',12); 

%Generate continue push button and wait

pbh = uicontrol(fig,'Style','pushbu

40],'Callback',{@button_Callback}

uicontrol(pbh); 

uiwait(fig); 

%cal

%center point are input into the guess. 

[betahat,resid,J] = nlinfit(xdata,ydata,'fringe',[fguess,c

%The fitting routine could be called a second, or third time; however 

%it did not seem to help. 

%[betahat,resid,J] = nlinfit(xdata,yd
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(xdata,ydata,'fringe',betahat); 

ce interval for the fitted parameters 

,1)-betaci(1,2))/2; 

(2); 

,1)-betaci(2,2))/2; 

mp 

me; 

).name 

iles) = struct('filename',datalist(nfiles).name, 

nt',A(nfiles),'sigmaA',sigmaA(nfiles),'sigma0',sigma0(nfiles),'sigma0sigm

 

); 

number (1/microns)'); 

%betahat 

%betahat,resid,J] = nlinfit

%betahat 

%nlparci returns the 95% confiden

betaci = nlparci(betahat,resid,J); 

A(nfiles) = betahat(1); 

sigmaA(nfiles) = abs(betaci(1

sigma0(nfiles) = betahat

sigma0sigma(nfiles)=abs(betaci(2

yfit = fringe(betahat,xdata); 

%create arrays of data and store in structure dataco

flist{nfiles} = datalist(nfiles).na

datalist(nfiles

datacomp(nf

'Acoefficie

a',sigma0sigma(nfiles)); 

plot(xdata, ydata,'*',xdata,yfit,'+'); 

%generate ok and redo push buttons

pbok = uicontrol(fig,'Style','pushbutton','String','Ok','Position',[10 10 60 

40],'Callback',{@ok_Callback}); 

uicontrol(pbok); 

pbredo = uicontrol(fig,'Style','pushbutton','String','Retry','Position',[10 50 60 

40],'Callback',{@redo_Callback}); 

uicontrol(pbredo

xlabel('Wave

ylabel('Fringe Amplitude (normalized)'); 

title('Fitting Fringe'); 

legend('data', 'Fringe Fit'); 

uiwait(fig); 

end %while loop end 

end %function end 



APPENDIX D. FRINGE M-FILE 

 

function yhat = fringe(beta,x) 

A = beta(1); 

b = beta(2); 

c = beta(3); 

d = beta(4); 

f = beta(5); 

yhat = f+d*cos(A*(x-b).^2+c); 

end 
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